3.7 Optimization

OBJ: Solve applied minimum and maximum problems

<u>Strategy</u>

- 1. Sketch
- 2. Find the objective function to be optimized in terms of the variables
- 3. If necessary find a secondary equation to be solved for the independent variable (get the objective function to one variable)
- 4. Differentiate the objective function and set =0.
- 5. Find the critical numbers and endpoints.
- 6. Use 2nd derivative test or sign chart to find the value you need.
- 7. Write answer in terms of the problem

Finding Maximum Volume (the box problem)

A manufacturer wants to design an open box having a square base and a surface area of 108 square inches. What dimensions will produce a box with maximum volume?

Minimize surface area.

You need to make a one liter can shaped like a right circular cylinder. What dimensions will use the least amount of material? Assume you cannot change the thickness of the material used. Hint: 1 liter = 1000cm³

